Recursion
 a. Transform recursive code to iterations (for or while loop)
 b. Solve a given problem recursively
 c. Calculate the best, worst, average case upper bound, lower bound, and runtime for a recursive algorithm.

Binary Trees
 a. Terminology – complete vs full trees, parents, siblings, path, level, height.
 b. Find the minimum/maximum number of internal nodes/leaves for a specific tree.
 c. Find the height of a tree.
 d. Find the level of a node.
 e. Pre/Post/In/Level order traversal for a given tree.
 f. Tree node implementation.
 g. Traversal implementation.

Binary Search Trees
 a. BST implementation.
 b. Add, remove node from given BST.
 c. Add a member function to a BST (findMax/Min, etc.)

Heaps & Priority Queues
 a. Array implementation of complete Binary Tree
 b. Heap implementation: buildHeap, insert, delete.
 c. Implement priority queues with a heap
 d. Decode a Huffman coding tree

Sorting Algorithms
 a. Algorithm implementation: insertion, bubble, selection, Shell, mergesort, quicksort, heapsort, binsert, radix sort.
 b. Calculate the best, worst, average case upper bound, lower bound, and runtime for a sorting algorithm – swaps and comparisons.

Hashing
 a. Hash and Probe functions
 b. Open vs closed hashing
 c. Insert/delete from hash table
 d. Rehash a table
 e. Calculate the load factor

Graphs (up to and including ch. 14.5)
 a. Terminology
 b. DFS – implementation, application of traversal
 c. BFS – implementation, application of traversal
d. Topological sort

e. Shortest path Dijkstra algorithm – implementation and application