
CSCI 230 – Homework 3

Double Linked List

Objectives

 Implement a DLL and its basic functionality.

 Test the DLL with detailed test cases.

 Analyze and compare DLLs vs SLLs.

Background information

Ch. 10 – Linked Lists, Shaffer textbook

A doubly-linked list is a similar to the singly-linked lists, except in two crucial ways: your nodes

now have pointers to both the previous and next nodes, and your linked list class has now have

pointers to both the front and back of your sequence of list node objects.

Visually, the singly linked lists look like this:

Doubly-linked lists containing the same data will look like this:

Assignment

Your implementation should:

1. Be generic (e.g. you use generics to let the users store objects of any types in your list)

2. Implement the OrderedDList class based on the List interface in OpenDSA 3.1.1.

3. Methods to implement and additional instructions for some methods are given below:

A. insert(E it) – Insert "it" at the proper location that ensures that the list is ordered.

Note that the current pointer is not moved after an insert.

B. remove() - Remove and return the current element if the element is in the list.

C. clear(), moveToStart(), moveToEnd(), prev(), next(), length(), currPos(),

moveToPos(), isAtEnd(), getValue(), isEmpty() – as described in OpenDSA

4. Methods not to implement: append(E it)

5. Be as asymptotically efficient as possible.

6. Contain exactly as many node objects as there are items in the list. (If the user inserts 5

items, you should have 5 nodes in your list).

7. Write a method indexOfMin that returns the index of the minimum item in a Double

Linked List, assuming that each item in the list implements a Comparable interface.

Warning: correctly implementing a doubly-linked list will require you to pay careful attention to

edge cases. Some tips and suggestions:

 Think carefully about the end cases (front and back) and what should happen when the

list is empty or nearly empty.

 Write pseudocode for your methods before writing code. Avoid immediately thinking in

terms of list node manipulation – instead, come up with a high-level plan and write helper

methods that abstract your node manipulations. Then, flesh out how each helper method

will work.

Or to put it another way, figure out how to refactor your code before you start writing it.

Your code will be significantly less buggy that way.

 Keep in mind the differences between objects and primitives (int, double, etc). This will

come up in two ways: one, you'll need to remember that changing an object might change

the reference in another place, and two, you'll need to remember to use == to compare

equality for primitives and nulls, and use .equals() for object comparisons. Tip: you may

use java.util.Objects to handle your equality checks with possibly-null values instead of

juggling the == and .equals() yourself. Here's documentation for the relevant method.

What to submit:

 A zipped folder containing a folder named [LastName][FirstIntial]_HW[#], that contains

your java files.

 One of the files must contain the DoubleLinkedList class in a file naturally named

DoubleLinkedList.java The filename and class name must match exactly what is in

bold.

https://docs.oracle.com/javase/8/docs/api/java/util/Objects.html#equals-java.lang.Object-java.lang.Object-

 One class named HW3 stored in a file named HW3.java that contains a main method

that demos your ordered list and what works and specifies in comments what doesn’t.

 Any other java files required of your solution. // There might not be any.

 Put DoubleLinkedList.java and HW3.java (and any other java files needed) in a

directory named YourLastNameFirstInitial_HW3. Then zip that folder. Then you

will have a folder YourLastNameFirstInitial_HW3.zip. This is what you need to

submit for HW3.

 Name your folder: YourLastNameFirstInitial_HW3.zip. For me, this would be:

MountrouidouX_HW3.zip.

