
CSCI 360 Project

Fall 2019

Instructor: Dr. X (Xenia Mountrouidou)

Activity Tracker

Note: this is a live document, subject to changes. Please check frequently

1. Introduction

 The Internet of Things (IoT) has entered our lives for the past years with several cool

gadgets that are connected to the Internet. One of the most common is the personal health

monitor and Fitbit is one of the most well-known brands. For this semester project you

will need to analyze and build software to control a personal activity tracker, similar to a

Fitbit. Your software solution should continuously monitor a person’s physical activities

and vital signs, and motivate people to be more physically active. The final product of

this project will be a prototype of a activity tracker software and User Interface, as well

as a complete design document with use cases, UML sequence, class, activity, and state

diagrams.

You will work in groups of minimum two, maximum four students. A good publication

on group collaboration that I recommend for you to read is titled: “All I Really Need to

Know about Pair Programming I Learned In Kindergarten”. Keep in mind that you will

submit a team review document in the end of the semester. Project work needs to be

completed by all partners equally. Furthermore, you will have a project presentation

https://collaboration.csc.ncsu.edu/laurie/Papers/Kindergarten.PDF
https://collaboration.csc.ncsu.edu/laurie/Papers/Kindergarten.PDF

where I can ask detailed questions about your work and figure out if you have worked

equally. Finally, the whole class will have the same project and plagiarism is impossible

in a project like this and will be easily discovered. The project will be uniquely built

based on your questions and interviews that you will conduct with the client (me ☺).

2. System Objectives

2.1. The activity tracker system will be designed for operation on a personal computer. It will

not be tested on an actual activity tracker device.

2.2. The activity tracker system will abide to the legal, regulatory, behavioral, and

sociological aspects of devices of its type.

2.3. The system will not communicate with a mobile application. This operation is left for

future expansions.
2.4. The system will show time, activity (steps), and sleep patterns. All inputs will be added

by internal simulation pseudo-random counters, not actual sensors.

3. Functional requirements

3.1. Show time

3.1.1. It must be easy for an individual to check the clock time  

3.1.2. An individual must be able to change the clock time on the activity tracker  

3.2. Track steps

3.2.1. The user must give their data: age, weight, goal, etc.   

3.2.2. The user must be able to retrieve:

3.2.2.1. Number of steps

3.2.2.2. Calories burned  

3.3. Sleep patterns 

3.3.1. The device should be able to indicate the sleep time and patterns

3.3.2. The user should be able to retrieve this information easily

3.4. Connection to the internet: the device should be able to send data over a network

connection securely.

3.5. Additional features: any additional features will be considered for extra credit

4. Non-functional requirements

4.1. Security

4.2. Performance

4.3. Reliability

4.4. Usability

5. Deliverables

5.1. Literature review (5 pts): Literature review (5 pts): This is the part where you need to

“do your homework” on what already exists out there before you discuss with the client.

You will need to research different sources (publications, blogs, product specifications)

and write a proper literature review with a paragraph summary for each source and

proper citations (IEEE style).

Submit your work on Oaks and on Github! My github handle is: mundruid for you to

share your repo with me.

Length: You will need to cite at least 10 different sources. Describe each source briefly

and include what it contributes to the solution of the problem, how it contributes this,

and any other information that it may give on the design and implementation of election

software.

5.2. D1 - Inception (10 pts): For this deliverable, you will need to submit the following

inception documents for your software such as: Vision, Use-Case enumeration with 2

use cases "fully dressed", use case UML diagram, supplemental specs, and a glossary.

Code: You will need to start working on the design of your User Interface (UI). You

may use powerpoint or draw.io. You need to have a good design, multiple screens, clean

buttons etc. You may start coding the basic view using Java FX and screen builder. Code

submission in this case is not required but encouraged.

Demo: short (min 7 mins, max 15 mins) presentation of vision, use cases, GUI

prototype, and any other items you would like to add.

5.3. D2 - Elaboration (10 pts): Submit all use cases fully dressed and domain model.

Include a short description of the domain diagram and justification of its components.

5.4.
Code: Code submission will be part of your grade this time. Submit an initial version of

your View (UI) using Java FX. Your code will be graded.

Documentation and Revisions: Collect all your documents: vision, supplemental specs,

glossary, use case diagram, domain model diagram, and all use cases fully dressed, in

one document, the Software Architecture Document. At this point you may start

revising your previous deliverables, such as use case diagram etc.

Naming and tools: You will need to use GitHub for version control. You will need to

add me to your repo (my github handle is mundruid). Include your documentation in

the repository. Use Eclipse or IntelliJ to create project named: “TeamMateLastNames-

ActivityTracker”. Use the package structure com.csci360.activitytracker.

5.5. D3 - Elaboration (10 pts): Submit all the system sequence diagrams and operation

contracts required for your election software. You may add these diagrams to your SAD

(Software Architecture Document) and submit a single document. Add any revisions you

may think are necessary based on my past feedback.

Code: Submit an improved version of your View (UI) using Java FX. Start coding the

controller and model parts of the project. You may submit blueprints of classes. You will

need to have at least 30% of your classes fully implemented.

Demo: short (min 7 mins, max 15 mins) presentation of progress with UI, SSDs, SDs,

and any other diagrams you think are worth demonstrating.

5.6. D4 - Objects (20 pts): Identify objects needed to implement your operations. Submit a

class diagram for the voting system. Suggest object responsibilities and collaborations.

Submit sequence diagrams that include labels that indicate all the object collaborations

based on GRASP. Include a short justification of your design choices.

Complete the object design, revise sequence diagrams. Note: it is important to apply the

GRASP principles, especially GoF Adapter, Factory, Facade, Singleton, Strategy,

observer and GRASP design principles such as Information Expert, Creator, Controller,

Polymorphism, etc.

Code: Submit any revisions on View (UI) using Java FX. Populate classes; at least 60%

of classes should be complete. Include Junit tests for all classes. Think about improving

the way you store data (file vs database) and include this in your object design. Address

important non-functional requirement of security especially when you store sensitive

data.

5.7. D5 - Java code and Testing (65 pts): Finalize your code and submit all the test cases

that you created using Junit or any other tool. Submit any other test cases that you would

like me to run.

What to submit:

1. README file that gives detailed instructions on how to run your code.

2. Create a jar file and submit this on Oaks. Instructions how to create a Jar file

using

eclipse: https://www.cs.utexas.edu/~scottm/cs307/handouts/Eclipse%20Help/jarI

nEclipse.htm. Instructions how to create a Jar file using

IntelliJ: https://blog.jetbrains.com/idea/2010/08/quickly-create-jar-artifact/.

3. A zip folder with your code. That is just to make sure that I have a backup with

your latest version of the code.

4. The final Software Architecture Document.

5. The powerpoint slides of your presentation.

5.8. Powerpoint final presentation & Demo (10 pts): You will need to present your work

in class. This will be a 15 min presentation with 5 mins left for Q&A. The presentation

should have professional slides that will present briefly your requirements, analysis,

system design, objects, and a demo your prototype.

Tips:

Collaboration tools:

https://www.teamwork.com/,

https://trello.com/

https://www.cs.utexas.edu/~scottm/cs307/handouts/Eclipse%20Help/jarInEclipse.htm
https://www.cs.utexas.edu/~scottm/cs307/handouts/Eclipse%20Help/jarInEclipse.htm
https://blog.jetbrains.com/idea/2010/08/quickly-create-jar-artifact/
https://www.teamwork.com/
https://trello.com/

