
CSCI 440: Computer Networks

Homework 1

Fall 2017

Summary:

We implement a very simple web server in Python or Java or C/C++.

Objectives:

• Practice basic UNIX-style socket programming

• Learn about the HTTP protocol

Background

• Section 2.2 in Kurose and Ross (Computer Networks) details the basics

of the HTTP protocol, with section 2.2.3 highlighting the HTTP message

format for requests and responses.

• Section 2.7 in Kurose and Ross (Computer Networks) demonstrates how

to use Python for socket programming, with 2.7.2 highlighting the TCP

protocol you will use.

Collaboration:

You may complete this assignment in pairs.

Introduction
In this lab, you will implement and test a very simple web server using the hypertext

transport protocol (HTTP), a text-based application-layer protocol. The basic outline

is as follows. Your server will establish a listening socket and wait for connections in

an infinite loop (so that it can serve as many as come in while it is waiting). It will

then need to accept a connection, then receive and parse the HTTP request. If the

request is valid, the server should read the file from the file system and send the file

contents (in small chunks, say 2 kilobytes) to the requestor preceded by the

appropriate response header lines. If the request is not valid, a 400 error code should be

sent instead. If there is some other error reading the file, a 404 error code should be

sent.

Implementation
Create a file called wwwserv.py (or wwwserver.java or wwwserver.c). The port your server listens

on should be a clearly identifiable variable; its value should be greater than 5000,

where users have rights to establish port listeners. You will want to make it a variable

because if you kill the server, the port will remain "in use" for a short while to ensure

that no stray requests for the port filter in.

After creating, binding, and listening on the socket, your server body should act like

the following:

while True

 Establish connection with a client

 Try

 Read a request

 If the request is invalid

 Send a 400 status code, close the connection, and continue

 Open the requested file (strip the leading '/' for a relative path)

 Send a single response header to the client

 Send the file to the client in small chunks

 Close the file and connection

 Handle IO Error (sending a 404 status code and closing the connection)

In lieu of a proper logging system, your server should report simple messages to the

console as it takes these steps.

Testing

Place a simple HTML file, such as example.html in the same directory as

your wwwserv.*. Requests to your web server for files will be relative to the server's

directory. For example, if you used port 8765 and were running your program on

your local machine (localhost or 127.0.0.1), you can request the file via a web

browser with the url http://localhost:8765/example.html or using telnet(1), as demonstrated in

Kurose and Ross. You can even make such a telnet-based request to a "real" web

server, as in the following transcript, which you can try yourself.

Questions

1. What happens if you try to make a second connection to your

server while it is still handling another connection?

For example, make one telnet connection to your server, but don't issue a

request yet. Make another telnet connection. If it succeeds, issue

a GET request. Then go back to your original connection and issue

a GET request.

What happened? Why?

2. Note that we use the program's directory to implicitly specify where the

web server should look for files. Does this guarantee that a malicious web

client cannot access files outside of the web server's directory? If so,

explain why. If not, give an example of a request a client could make to

obtain an unauthorized file.

What to turn in

• Your Python, Java, or C/C++ file, with descriptive, professional

comments.

• A single PDF containing (merged)

o A transcript of telnet sessions

▪ requesting a short file from your server,

▪ making an invalid request, and

▪ requesting a non-existent file.

o A transcript of your server starting and handling these requests

o Your answers to the questions

Submissions missing the PDF or files in any other formats will not be

graded.

Acknowledgments

This lab was adopted from:
http://www.cs.grinnell.edu/~weinman/courses/CSC364/2014S/labs/http-

server.html

http://www.cs.grinnell.edu/~weinman/courses/CSC364/2014S/labs/http-server.html
http://www.cs.grinnell.edu/~weinman/courses/CSC364/2014S/labs/http-server.html

	Acknowledgments
	This lab was adopted from: http://www.cs.grinnell.edu/~weinman/courses/CSC364/2014S/labs/http-server.html

