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Abstract

Many different requirements can be placed on intrusion detection systems. One such im-
portant requirement is that it be effective i.e. that it should detect a substantial percentage of
intrusions into the supervised system, while still keeping the false alarm rate at an acceptable
level.

This paper aims to demonstrate that, for a reasonable set of assumptions, contrary to what
has previously been thought, the false alarm rate is the limiting factor for the performance of
the intrusion detection system. This is due to the base-rate fallacy phenomenon, that in order
to achieve substantial values of the Bayesian detection rate, P(Intrusion|Alarm), we have to
achieve—a perhaps unattainably low—false alarm rate, on the order of 1- 1073, or 1/100, 000
per “event.”

1 Introduction

Many requirements can be placed on an intrusion detection system (IDS for short) such as ef-
fectiveness, efficiency, ease of use, security, interoperability, transparency etc., etc. Although much
research has gone into the field in the past ten years, the theoretical limits of many of these pa-
rameters have not been studied to any significant degree. The aim of this paper is to provide a
discourse on one serious problem with regard to one of these parameters; effectiveness, especially
how the base-rate fallacy affects the operational effectiveness of any intrusion detection system.

2 Problems in Intrusion Detection

The field of automated computer security intrusion detection—intrusion detection for short—is
currently some nineteen years old. The seminal paper that is most often mentioned is James P.
Anderson’s technical report [And80], where he states in reference to one class of intruders, the
masquerader, that:

Masquerade is interesting in that it is by definition extra use of the system by the
unauthorised user. As such it should be possible to detect instances of such use by
analysis of audit trail records to determine:

a. Use outside of normal time

*This work was funded by The Swedish National Board for Industrial and Technical Development (NUTEK) under
project P10435.



b. Abnormal frequency of use
c. Abnormal volume of data reference
d. Abnormal patterns of reference to programs or data

As will be discussed in the subsequent section, the operative word is “abnormal”
which implies that there is some notion of what “normal” is for a given user.

Later work (See [DN85, Den87, SSHW88]) expanded on these ideas, and identified two major
types of intrusion detection strategies:

Anomaly detection The strategy of declaring everything that is unusual for the subject (com-
puter, user etc.) suspect, and worthy of further investigation, and

Policy detection Our term for the strategy of deciding in advance what type of behaviour is
undesirable, and through the use of a default permit, or deny, policy, detecting intrusions.

About the same time it was suggested in [HK88, Lun88] that the two main methods ought
to be combined to provide a complete intrusion detection system, and that the resulting system
should be made autonomous enough to be trusted to respond to detected intrusions unsuper-
vised. The authors recognised that much research remained to be done before that goal could
be attained.!

Presently, the larger questions regarding intrusion detection remain largely unanswered.
Important questions include, but is by no means limited to:

Effectiveness How effective is the intrusion detection. To what degree does it detect intrusions
into the target system, and how good is it at rejecting false positives, aka false alarms?

Efficiency What is the run time efficiency of the intrusion detection system, how much com-
puting resources and storage, does it consume, can it make its detections in real time etc?

Ease of use How easy is it to field and operate for the user that is not a security expert, and can
that user add new intrusion scenarios to the system? An important part of ease of use is the
question of what demands can be made of the person responding to the intrusion alarm.
How high a false alarm rate can he realistically be thought to be able to cope with, under
what circumstances is he likely to ignore an alarny etc., etc?

Security When more and more intrusion detection systems are fielded, one would expect more
and more attacks directed at the intrusion detection system itself, to circumvent, or other-
wise render the detection ineffective. What is the nature of these attacks, and how resilient
is the intrusion detection system to them?

Interoperability As the number of different intrusion detection systems increase, to what de-
gree can they, and how do we make them, interoperate?

Transparency How intrusive is the fielding of the intrusion detection system to the organisation
employing it? How much resources will it consume, in terms of manpower etc?

While there is current interest in some of these issues, they remain largely unaddressed by
the research community. This is perhaps not surprising, since, in our minds at least, many of
these questions are difficult to formulate and answer. For detailed, and thorough survey of
research in intrusion detection to date see [Axe98].

This paper concerns itself with one of the questions above, namely that of effectiveness. Es-
pecially, how the base-rate fallacy affects the required performance of the intrusion detection
system in regard to false alarm rejection etc.

1We would like to add that much research still remains to be done before this goal can be attained.

2It’s been long known in security circles that ordinary electronic alarm systems should be circumvented in day-
time, during normal operation, when the supervisory staff is more likely to be lax due to being accustomed to false
alarms [MPca].



The remainder of this paper is structured as follows: section 3 is a description of the base-rate
fallacy, section 4 continues with an application of the base-rate fallacy on the intrusion detection
problem, given a set of reasonable assumptions, section 5 describes the impact the previous
results would have on intrusion detection systems, section 6 remarks on proposed future work,
with section 7 concluding the paper. Appendix A diagrams a base-rate fallacy example.

3 The Base-Rate Fallacy

The base-rate fallacy?® is one of the cornerstones of Bayesian statistics, as it stems directly from
Bayes’ famous theorem:

P(A)-P(B|A)
P(B)

Expanding the probability P(B) for the set of all n possible, mutually exclusive outcomes A
we arrive at equation (2):

P(A|B) = M

P(B) =) P(Ai)- P(B|4)) )
=1
Combining equations (1) and (2) we arrive at a generally more useful statement of Bayes’
theorem:
P(A)- P(BJA)

P(A|B) = Z?:l P(4;)- P(B|4)) 9

The base-rate fallacy is best described through example.* Suppose that your physician per-
forms a test that is 99% accurate, i.e. when the test was administered to a test population all
of which had the disease, 99% of the tests indicated disease, and likewise, when the test pop-
ulation was known to be 100% free of the disease, 99% of the test results were negative. Upon
visiting your physician to learn of the results he tells you he has good news and bad news. The
bad news is that indeed you tested positive for the disease. The good news however, is that out
of the entire population the rate of incidence is only 1/10000, i.e. only 1 in 10000 people have
this ailment. What, given the above information, is the probability of you having the disease?®

Let us start by naming the different outcomes. Let S denote sick, and not S i.e. —S denote
healthy. Likewise, let P denote a positive test result, and —P denote a negative test result. Re-
stating the information above; Given: P(P|S) = 0.99, P(—P|=S) = 0.99, and P(S) = 1,/10000,
what is the probability P(S|P)?

A direct application of equation (3) above gives:

P(S) - P(P|S)
P(S)- P(P|S)+ P(—S)- P(P|-S)
The only probability above which we do not immediately know is P(P|—S). This is easily

found though, since itis merely 1— P(—-P|-S) = 1% (Likewise, P(—S) = 1—P(S)). Substituting
the stated values for the different quantities in equation (4) gives:

P(S|P) =

(4)

1/10000 - 0.99
1/10000 - 0.99 + (1 — 1/10000) - 0.01
That is, that even though the test is 99% certain, your chance of actually having the disease

is only 1/100, due to the fact that the population of healthy people is much larger than the
population with the disease. (For a graphical representation, in the form of a Venn diagram,

P(S|P) = =0.00980. .. ~ 1% (5)

3The idea behind this approach stems from [Mat96, Mat97].
4This example hinted at in [RN95].
5The reader is encouraged to make a quick “guesstimate” of the answer, at this point.



depicting the different outcomes, turn to Appendix A). This result often surprises people—
we were no exception—and it is this phenomenon—that humans in general do not take the
basic rate of incidence, the base-rate, into account when intuitively solving such problems in
probability—that is aptly named “the base-rate fallacy.”

4 The Base-Rate Fallacy in Intrusion Detection

In order to apply the above reasoning to the computer intrusion detection case we must first
find the different probabilities, or if such probabilities cannot be found, make a set of reasonable
assumptions regarding them.

4.1 Basic frequency assumptions

Let’s for the sake of further argument hypothesize about a figurative computer installation with
a few tens of workstations, a few servers—all running UNIx—and a couple of dozen users. Such
an installation could produce on the order of 1000,000 audit records per day with some form
of “C2” compliant logging in effect, in itself a testimony to the need for automated intrusion
detection.

Suppose further that in such a small installation we would not experience more than a few,
say one or two, actual attempted intrusions per day. Even though it is difficult to get any fig-
ures of real incidences of attempted computer security intrusions, this does not seem to be an
unreasonable number.

The figures above are based on [LGG198], and while the results of that study would seem
to indicate that indeed low false alarm rates can be attained, one could raise the objection that
since the developers of the tested systems had prior access to “training” data that was very
similar to the later evaluation data, the false alarm suppression capability of the systems was
not sufficiently tested. Another paper that discusses the effectiveness of intrusion detection
is [Max98]. Unfortunately it is not applicable here.

Furthermore assume, that at this installation we do not have the man power to have more
than one site security officer—SSO for short—which probably has other duties also, and that the
SSO, being only human, can only react to a relatively low number of alarms, especially if the
false alarm rate is high.

Even though an intrusion could possibly affect only one audit record, it is likely that it affects
a few more than that, on average. We have previously made a study that concerns itself with the
trails that SunOS intrusions leave in the audit trail [ALGJ98], and from that data we can make
an estimate; say ten audit records affected for the average intrusion.

4.2 Calculation of Bayesian detection rate

Let I and —I denote intrusive, and non-intrusive behaviour respectively, and A and —A denote
the presence or absence of an intrusion alarm. Working backwards from the above set of as-
sumptions we can obtain the required values of the:

True Positive rate Or detection rate. The probability P(A|I), i.e. that quantity that we can ob-
tain when testing our detector against a set of scenarios we know represent intrusive be-
haviour.

False Positive rate The probability P(A|-I), i.e. the false alarm rate, obtained in the same man-
ner as above.

The other two parameters, P(—A|I): the False Negative rate, and P(—A|—I): the True Negative
rate are easily obtained since they are merely:

P(=A|I) =1 — P(A|I); P(-~A|-I) = 1 — P(A|-I) (6)
Of course, our ultimate interest is that both:
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e P(I|A)—thatanalarm really indicate an intrusion (Henceforth called the Bayesian detection
rate), and

e P(—I|-A)—that the absence of an alarm signify that we have nothing to worry about,

remain as large as possible.
Applying Bayes’ theorem to calculate P(I]A) results in:

P(I)- P(A|I)

Likewise for P(—I|-A):
Pt ) — P(~I) - P(-A|-I) (8)

P(-1)- P(-A|-I) + P(I) - P(~A[I)

The assumptions above gives us a value for the rate of incidence of the actual number of
intrusion in our system, and its dual (10 audit records per intrusion, two intrusions per day, and
1000,000 audit records per day). Interpreting these as probabilities:

1-108
P(I) = 1/ 510 ~ 2 107% P(~I) = 1 — P(I) = 0.99998 )

Inserting equation (9) into equation (7):

2.1075 . P(A|I)
2105 - P(A[I) + 0.99998 - P(A[-I)

Studying equation (10) we see the base-rate fallacy clearly. This should by now come as
no surprise to the reader, since the assumptions made about our system makes it clear that we
have an overwhelming amount on non-events (benign activity) in our audit trail, and only a few
events (intrusions) of interest. Thus, the factor governing the detection rate (2-10%) is completely
overwhelmed by the factor (0.99998) governing the false alarm rate. Furthermore, since 0 <
P(A|I) < 1 the equation will have its desired maximum for P(A|I) = 1, and P(A|-I) = 0,
which gives the most beneficial outcome as far as the false alarm rate is concerned. While these
values would be desirable accomplishments indeed, they are hardly attainable in practice. Let
us instead plot the value of P(I|A) for a few fixed values of P(A|I) (including the “best” case
P(A|I) = 1), as afunction of P(A|-I), see figure 1 on the following page. Please, note that both
axes are logarithmic.

It becomes clear from studying the plot in figure 1 that indeed, even for the unrealistically
high detection rate 1.0 , we have to have a very low (on the order of 1 - 10~°) false alarm rate,
for the Bayesian detection rate to have a value of 0.66%, i.e. about two thirds of all alarms will
be a true indication of intrusive activity. With a more realistic detection rate of, say, 0.7, for the
same false alarm rate the value of the Bayesian detection rate is about 58%, nearing fifty-fifty.
Even though the number of events (intrusions/alarms) is still low, it’s the author’s belief that
a low Bayesian detection rate would quickly “teach” the SSO to safely ignore all alarms, even
though their absolute numbers would theoretically have allowed complete investigation of all
alarms. This becomes especially true as the system scales; a 50% false alarm rate, with a total of
100 alarms would clearly not be tolerable. Note that even quite a large difference in the detection
rate does not substantially alter the Bayesian detection rate, which instead is dominated by the
false alarm rate. Whether such a low rate of false alarms is at all attainable is discussed in the
following section (Section 5).

It becomes clear that for example a requirement of only 100 false alarms per day is meet by
a large margin with a false alarm rate of 1 - 1075; resulting in 1 - 10/10 = 1 - 10® “events” per
day, which in turn results in on average 1 - 1075 - 1- 10° = 1 false alarm per day. By the time our
ceiling of 100 false alarms per day is meet, at a rate of 1 - 10~ false alarms, even in the best case

P(I|A) = (10)
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Figure 1: Plot of P(I]A)

scenario, our Bayesian detection rate is down to, around 2%, by which time no-one will bother
to care when the alarm goes off.
Substituting (6) and (9) in equation (8):

B 0.99998 - (1 — P(A|-I))
~0.99998 - (1 — P(A|-I))+2-10-5- (1 — P(A|]))

A quick glance at the resulting equation (11) raises no cause for concern. The large P(—I)
factor (0.99998) will completely dominate the equation, giving it values near 1.0 for the values
of P(A|—I) we are talking about here, regardless of the value of P(A|I).

This is the base-rate fallacy in reverse, if you will, since we have already demonstrated that
the problem is that we will set off the alarm too many times in response to non-intrusions,
combined with the fact that we don’t have many intrusions to begin with. Truly a problem of
finding a needle in a haystack.

The author does not see how the situation behind the base-rate fallacy problem would
change for the better in the years to come. On the contrary, as computers get faster, they will
produce more audit data, while it is doubtful that intrusive activity will increase at the same
rate.’

P(—I|-A) (11)

6 Another way of calculating that than from equation (10) is of course by realising that 100 false alarms and only a
maximum of two possible valid alarms gives: 57355 ~ 2%.

7In fact, it would have to increase at a substantially higher rate for it to have any effect on the previous calculations,
and were it ever to reach level enough to have such an effect—say 30% or more—the installation would no doubt have

a serious problem on its hands, to say the least...



5 Impact on the Different Types of Intrusion Detection Sys-
tems

As stated in the introduction, approaches to intrusion detection can be divided into two major
groups, policy based, and anomaly based. The previous section developed requirements regard-
ing false alarm rates, and detection rates to place on intrusion detection systems in order to make
them useful in the stated scenario.

It could be argued that the above reasoning applies mainly to policy based intrusion detec-
tion. In some cases Anomaly based detection tries not to detection intrusions per se, but rather
to differentiate between two different subjects, flagging anomalous behaviour, in the hope that
it would be indicative of e.g. a stolen user identity. However, we think the previous scenario
is useful as a description of a wide range of more “immediate,” often network based, attacks,
where we will not have had the opportunity to observe the intruder for an extended period of
time “prior” to the attack.

In order to pass sound judgment on the effectiveness of an anomaly based intrusion detec-
tion system, we also have to have a very well founded hypotheses about what constitutes “nor-
mal” behaviour for the observed system. We know of only one attempt at such an evaluation in
conjunction with the presentation of an anomaly based intrusion detection method: [LB98].

There are general results in detection and estimation theory that state that the detection and
false alarm rate are linked [VT68]. Obviously, if the detection rate is 1 i.e. saying that all events
are intrusions, we will have a false alarm rate of 1 as well, and conversely the same can be said
for the case where the rates are 0.8 Intuitively, we see that by classifying more and more events
as intrusive—in effect relaxing our requirements on what constitutes an intrusion—we will in-
crease our detection rate, but also, misclassify more of the benign activity, and hence increase our
false alarm rate. Unfortunately, to apply these results to the current situation we need to have a
firm grasp—in the form of a statistical model—of, what constitutes “normal” or “background”
traffic.

Plotting the detection rate as a function of the false alarm rate we end up with what is called
a ROC—Receiver Operating Characteristic—curve. (For a general introduction to ROC curves,
detection and estimation theory, see [VT68]). We N
have already stated that the points (0;0) and
(1;1) are members of the ROC curve for any
intrusion detector. Furthermore between these 08
points the curve is convex, were it concave, we
would be better off to reverse our decision, and it
cannot contain any dips—that would in effect in- 06
dicate a faulty, non-optimal detector, since a ran-
domised test would then be better. See figure 2
for the ROC curve of our previous example.

We see that our ROC curve has a very sharp rise
from (0;0) since we quickly will have to reach
acceptable detection rate values (0.7) while still
keeping the false alarm rate at bay. It is doubtful
if even policy detection, the type of detection of- 0
ten thought to be the most resilient to false alarms

can reach as low values as 1 - 105 i.e. 1/100, 000

while still keeping the detection rate as high as  Figure 2: Plot of P(A|I) as a function of P(A|—I)
0.5-0.7 or above.

To reach such levels it is imperative that the designer of intrusion detection systems do not
introduce some policy element that has even a remote chance of triggering in the face of benign
activity—perhaps not even known at the time of making the policy—lest the system will fall
prey to too low a Bayesian detection rate. Note that this also includes changes over time, that a

Assumed RbC

P(AIl)

0.4

0.2

0 0.2 0.4 0.6 0.8 1
P(AI-T)

81f you call everything with a large red nose a clown, you’ll spot all the clowns, but also Santa’s reindeer, Rudolph,
and vice versa.



policy based system would be incapable of adapting to. This situation could well arise in some
of the commercial systems we have seen, which contain ad-hoc patterns of intrusion signatures
that would not be appropriate in the face of new quite probable traffic. If the designer was
to make any such “pattern” more general to catch more variations that would immediately,
following the discussion above, result in an increased risk of false alarms.

6 Future Work

A difficult point is the basic probabilities that the previous calculations are based on. These
probabilities are presently subjective, but future work must include measurement to either at-
tempt to calculate these probabilities from observed frequencies—the frequentist approach—or
the deduction of these probabilities from some model of the intrusive process, and the intrusion
detection system—taking the objectivist approach.

Furthermore, this discourse treats the intrusion detection problem as a binary decision prob-
lem, i.e. that of deciding whether there has been an “intrusion” or not. The work presented does
not differentiate between the different kinds of intrusions that could take place, and that the de-
tection mechanism could very well cross-respond to any one of them in an undesired fashion.
Thus on a more detailed level, the intrusion detection problem is not a binary but an n-valued
problem.

With observed or otherwise soundly founded probabilities one would calculate the Bayesian
and other properties, and even construct an optimal detector for the intrusion detection prob-
lem. It would then be possible to state under which circumstances the intrusion detection prob-
lem would not only be difficult, but even impossible.

Another problem is that in order to employ soundly founded results in information, and
communication theory, we need knowledge of the distributions of the studied features, both
when the system is operating undisturbed, and when the system is under attack. Armed with
such information, one could make—more or less—absolute predictions of the effectiveness of
the detection, and one could even decide optimally the level of detection thresholds etc, under
the given assumptions of the distributions?

Another area that needs attention from the perspective of this paper, is that of the capabilities
of the SSO. How does the human-computer interaction take place, and precisely what Bayesian
detection rates would an SSO tolerate under what circumstances etc.

The other parameters discussed in the introduction (efficiency, etc.) also needs further atten-
tion.

7 Conclusions

This paper has aimed to demonstrate that intrusion detection in a realistic setting is perhaps
harder than previously thought. This is due to the base-rate fallacy problem, and because of it,
the factor limiting the performance of an intrusion detection system is not the ability to correctly
identify behaviour as intrusive, but rather its ability to suppress false alarms. A very high standard,
less than 1/100, 000 per “event” given the stated set of circumstances, will have to be reached for
the intrusion detection system to live up to these expectations, from an effectiveness standpoint.
Much work still remains before it can be demonstrated that current IDS approaches will be able
to live up to real world expectations of effectiveness.

9See [VT68] for an introduction to the field.
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Appendix A Venn Diagram of the Base-Rate Fallacy Example

The Venn diagram in figure 3 graphically depicts the situation in the medical diagnostic example
of the base-rate fallacy given earlier.
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Figure 3: Venn diagram of medical diagnostic example

Though the Venn diagram is not to scale—the interesting parts would not be discernible if
it were—it clearly demonstrates the basis behind the base-rate fallacy, i.e. that the population
in the outcome S is much smaller than that in =S and hence that even though P(P|S) = 99%,
and P(—P|-S) = 99%, the relative sizes of the missing 1% in each case—area 2) and 4) in the
picture—are vastly different.

Thus when we compare the relative sizes of the four numbered areas in the diagram, and
interpret them as probability measures, we can state the desired probability, P(S|P)—i.e. “What
is the probability that we are in area 3) given that we are inside the P-area?” As is clear from the
graph, area 3) is small relative to the entire P-area, and hence, the fact that the test is positive
does not say much, in absolute terms, about our state of health.
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